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Abstract

The main focus for any robotic pick and place task is the ability of grasp objects robustly
with stability. In an industrial environment the task becomes naive as the environment is
modified according to the benefits of the robot. The sensors receive the benefits of struc-
tured environment. On the other hand, as the robotic systems are rapidly implemented in
assistive or home scenarios, the task of pick and place becomes highly complex. The robots
have to perform in a human environment, where the world is designed for benefits of hu-
man. The robot have to adapt to that environment by planning with partial sensor infor-
mation without colliding with human or other objects in the environment. The focus of
the research is the theory and implementation of a grasping framework, where the com-
mon commercially available hands are compared and evaluated with the performance of
self-designed robotic hands. The research in one hand deals with the complexity of de-
signing robotic hands specific to a designated task in the context of tree topology. On the
other hand the evaluation and comparison of the designed hand with commercially avail-
able robotic hands in a general framework of robotic grasping.

For assessment and evaluation of the hands, the grasping system generates stable grasp
points by means of finger placement points on recognized objects by statistical learning
methods. As the self-designed hands are task-specific, it can be easily assumed that the for-
mulation of grasping points would be significantly different than the points calculated for
common hands. After recognizing and calculating robust and stable grasping points, the
robotic system would be able to execute the task of grasping and manipulate the object
according to specified task. After the execution of the grasping task by both hands in an
identical environment, the result of both hands will be assessed and evaluated on the basis
of time-complexity, task execution, performance and stability.
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1
Introduction

The core mechanism for any robotic pick and place task for non-symmetric objects is the

calculation for robust and feasible grasping points. The complexity of a grasping system

for asymmetric objects in unstructured environment is highly dependent on the placement

of fingers in the hand. i.e the kinematics of the hand. In the dissertation, a general grasp-

ing framework is been proposed where the commercially available robotic hands will be

compared and evaluated with the self-designed robotic hands which are task-specific. For

the evaluation process, the robotic system tries to recognize objects stored in a database

and grasp them according to the calculation of grasping points based on the placement of

robotic fingers for stable and suitable grasps. The accumulated grasps will be evaluated in
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the larger context for picking, placing and manipulating the recognized objects.

The task can be divided into several modules where the combination of individual mod-

ules lead to the task of grasping the object and manipulating them according to the des-

ignated task. The modules can be defined as a) Recognizing the object, b) calculation of

grasping points based on recognized features of the object, c) Evaluation and synthesis of

the grasping points, d) Implementation of the grasping framework which leads the system

to learn the suitable grasps for future run and less computation, e) Path planning for the

robot to perform the grasps and f) assessment of the system for comparing grasps obtained

from different strategies.

As the robotic systems are gradually moving towards the dimension where the grasp-

ing is not only limited to regular shaped objects, the complexity of calculating grasping

points is increasing exponentially. The problem becomes severe as no general model ex-

ists for robotic hands. Slight variation in the placement of the fingers on the hand has huge

impact on the complexity of the task. The hand structures vary depending upon the num-

ber of fingers, position of the fingers and specification. There are also several limitations

which add extra constraints to the task of grasping. In the unstructured environment, the

task of perceiving the object varies upon clutter, occlusion, viewpoint, lightning conditions

and other barriers which constraints the task of generating a full model of the object based

on limited sensor information which would lead to the recognition of object in 6D pose.

Analyzing and calculating the grasping points of the object online and offline is computa-

tionally highly expensive. The task can be simplified by probabilistic methods which relies

on artificial intelligence strategies. The calculated grasps can be stored in a database for later

evaluation of grasping of similar-shaped objects. After calculation of the grasping points
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the grasps should be synthesized based on their stability for the designated task of namely

pick and place. For the task of manipulation of the objects, the robotic manipulator needs

to find the inverse kinematics solution where the planned trajectory should be aware of the

collision and constraints in the workspace environment.

The focus of the system is on the calculation of grasping points, evaluation and synthesis

of the grasping points for feasibility and stability, and the approach to learn the grasping

points for novel objects. For synthesizing the grasps on objects, two approaches are pre-

ferred. In the analytical approach, the grasps are based on force-closure properties and it

is independent of the TaskWrench Space. The drawback of the methods is it is compu-

tationally expensive. Whereas in the empirical approach, the grasps are specified for des-

ignated tasks and grasping points are evaluated on the basis of perception of the object to

be grasped. The task wrench space is based on evaluation of several grasps by iteration and

choosing the best feasible grasping points for the task in hand. For deciding the best grasp

pose on a recognized object for a specified task can be calculated by the means of statistical

learning methods such as Support Vector Machine (SVM) or probabilistic methods such

as Naïve Bayes, HiddenMarkovModels or Recurrent Neural Networks. After calculating

the feasible grasping points, the system should plan collision aware and constraint aware

inverse kinematics solutions of the motions for the manipulator to place the end-effector

in suitable pose for perform the grasps. As the environment is unstructured, there is a little

possibility of performing same motion grasping different objects. The task of manipula-

tion can be performed by searching algorithms or tree based searching algorithms such as

Rapidly exploring Random Trees (RRT).
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1.1 Recognizing objects

Recognizing objects in the unstructured environment is one of the most challenging task.

The performance of the object recognition system highly depends on several factors such

as occlusion, lighting conditions, scale, reflection and many more which hinders the system

to detect the proper features need to be detected for identifying a right object. These con-

straints may lead the system to high false positive values, where the system detects a com-

pletely different object or not detects at all.

Human perceive their environment in three dimension, whereas most robotic or com-

puter systems are based on 2D images. The task is highly complex, as the robotic system

have to find appropriate features provided by the pixels in the image. After that the system

have to compare the sepecific part of the image which corresponds to an object to its pre-

viously stored image database. Although the human vision system works in the same way,

but there is a difference in one added dimension. Colaborating another dimension to the

task on one hand increases the accuracy and avoids several constraints mentioned above,

but on the other hand it comes with the gift of complexity.

For recognizing an object in 3D, a system has to go through several processes which in-

cludes capturing the environment, processing the environment, detecting the features cor-

responding to the object, segmenting the object from the environment, detecting the 6D

pose of the object. For the test environment, the system has to go through the same process

again but with the added functionality of comparing the detected features upto a certain

threshold which outputs an object as recognized by the system. The viewpoint is one of

the most important constraint in a object recognition system as the system would have to

detect an object where it is rotated or inverted. These would generate a huge variation in
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the observable features in the training and test data. Most object recognition system fails

to detect the right object in the variation of the viewpoint. So for training an object model

the system have to consider the full 6d pose of the object(Translation in x,y and z direction

and the rotation such as roll, pitch and yaw). The objects can be recognized in online and

offline mode. In the offline mode, for testing and validation, the captured environment or

the segmented object models can be compared in a later stage. For the mostly preferred on-

line mode, the system have to perform the whole task of segmenting the object, extracting

the features, comparing the features with the stored features have to be performed in real

time and in less time consuming and robust manner.

1.1.1 Generating object Dataset

There are several variations of a single model. There exists more than thousand variations

of a simple object such as a cup. The system should have to learn a model of the cup from

several segmented object model corresponding to a cup. e.g The cylinder model with a han-

dle can be considered as a cup model. So the system have to go through several model of

a single object in the training phase for generating a specific category of a cup model. For

creating an object model, the system has to go through several steps which includes seg-

menting the object model from the environment and registering the segmented views from

different viewpoints to obtain a full model of an object which solves the problem of 6D

pose information. The features collected in each view will be compared for registering the

object scenes. The objects models can be stored in a database for detecting the object and

recognizing them in the testing environment. By the process, a local database can be cre-

ated with the objects in hand. For increasing the number of objects in the database, several
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models can be borrowed from the other databases which are available to be borrowed. Such

databases are namely YCB (Yale-California-Berkely), Amazon dataset, CMU,MIT, KIT are

others.

1.2 Calculating Grasping Points

When the system recognizes the object, the next task is to find the robust and stable grasp-

ing points based on the recognized features. Just like the generation of database for the ob-

ject models for recognizition, an approach can also be incorporated where the stable grap-

ing points of an object can be stored in a database for further implementation. The other

appraoch can be considered to calculated the graping point on-the-fly where the system

detects grasping point of an object in real time. For both offline or online graping point cal-

culation, we can refer to the database created for graping points. For calculating the grasps

the system have to consider several factors which includes the number of fingers in a hand,

the position of fingertips on a hand, the placement of fingertips on the object, the 6D pose

collected for the object from the recognition structure, the task wrech space for the graping

task and others.

With the recognized features the system calculates several graps by which the object can

be picked up. But as the final constraint is to calcualte feasible and stable graps, the system

have to discard the graps which does not implement feasibility. We also have to consider the

factor of in-hand manipulation in the picking tasks, where the force-closed grap provides

the best solution among others. In a force-closed graps the hand does not allow external

motion. The role of no-slip conditions also have to considered as for the task of pick and

place, there is room of errors by unstable graps where the object may slip from the hand or
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may bring harm to the hand, the arm or the collaborating human in the environment.

1.2.1 HandDesign for Grasping

Robotic hands are kinematic chains with a tree topology consisting of several common

joints that branch to a number of serial chains, each of them corresponding to a different

end-effector. A typical example of a kinematic chain with a tree topology is a wristed, multi-

fingered hand.The placement of the end-effectors of the hand plays the most vital role in

the taks of graping objects in the context of stability and feasibility. Without a proper place-

ment of fingers there would still be risk of slipage of object, improper grasping, harm to the

object, hand or to the environment. Though the initial would be performed on the Barrett

hand, which is a reputed hand hardware in the robotics community, the final work will be

performed on the self-designed hands. The assesment of the new designed hands will be

based on the same task performed over and over again with the reputed hardware and self-

designed hands and comparing their performance based on stability, calculation of feasible

graping points, time-complexity of the task, performance measure for some general tasks.

Hand design is based on tree topology structure and highly focused on the task in hand,

which considers the task wrech space(TWS) of the task. Although it means that there is

very little room for error and the task should be dealt with exact kinematic synthesis. One

of the first step for exact kinematic synthesis is to calculate the maximum number of posi-

tions that can be used, whihc define the workspace of the chain. In the case of tree topolo-

gies, we have to consider a task having the same number of positions for each of the mul-

tiple end-effectors; this means that we are dealing with a coordinated action of all those

end-effectors, denoted as simultaneous task. We denote a tree topology of a hand as a kine-
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matic chain as that of a chain having a set of common joints spanning several chains and

ending in multiple end-effectors. The topology is modelled by Graph Theory. The kine-

matic chain is represented as rooted graph, with the root vertex being fixed with respect to

a reference frame. In tree topologies, a vertex can be connected to several edges defining

several branches; a tree topology will always have links that are ternary or above, which are

identified in the graph as a vertex spanning several edges.

1.2.2 Grasp Synthesis

Grasping synthesis needs to be performed when a contact is formed or broken. A grasp-

ing synthesis system should compute space of forces and torques that can be applied by the

grasp where the grasps should be numerically evaluated. The evaluation of grasps can be

performed by comparing grasps of one hand with one object, comparing grasps of many

hands with one objects, comparing grasps of many hands across a task specified object set.

Synthesis of grasps can be performed in two ways. The analytical approach determines the

contact locations on the object and the hand configuration that satisfy task requirements

through kinematic and dynamic formulations. On the other hand empricial approaches try

to mimic human grasping to select a grasp that best conforms to task requirements and the

target object geometry. The analytical approach is based on force-closure properties, but

it is independent of tasks and computationally highly expensive. The empirical approach

tries to find stable grasps in the lower-dimensional task space. In this approach the seman-

tic, space, size of the object manipulated in the task is been provided. Many reputed grasp

synthesis technologies such as GraspIT are based on the empirical approach.

8



1.2.3 Learn to Grasp

The evaluated grasps can be stored in a dataset for future references such as grasping other

similar kind of objects. As calculating grasping points of an objects is a time-consuming and

tedious task, selecting the most feasible and stable grasps brings other notions of complex-

ity. The complexity can be highly reduced by implementing machine learning techniques

such as Support Vector Machines (SVM), HiddenMarkovModels (HMM), Bayesian

Learning, Concurrent Neural Networks or Deep Learning Techniques. This techniques

can allow the system to not only identifying the most stable grasping points, also they can

empower the system to learn grasps which will be highly helpful in determining the grasp-

ing points for similar type of objects or novel objects.

1.3 Motion Planning for Grasping

When the objects are recognized in the environment for grasping and the grasping points

are been evaluated, now it is the role of the arm of the robot to reach a certain position

where the hand can execute the grasps. For manipulating the arm to a such position the

inverse kinematics should be calculated in real time. As the environment is unstructured,

there cannot exist a single solution for the arm to reach the desired position. The trajectory

can be varied based on the placement of the object, obstacles in the path of the arm, the

human involvement in the environment or the occlusion of the robot arm in the environ-

ment. So the trajectory defined by the motion planned by the system should be collision

aware and constraint aware.

For collision aware inverse kinematics solution, the system has to consider the obstacles

present in the environment such as table corner , robot bodies or the other objects which
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are not meant to be grasped. The system has to maintain a collision map of the environ-

ment in real time where the inclusion or exclusion of an object in the environment can be

detected by constant updates. Also the system has to filter out the own body of the robot

which can occlude the environment. The system has to perform several types of goals such

as pose goal, joint goal or cartesian point trajectories. For a simple task such as picking or

placing an object in the environment, the system has to perform defined trajectories which

may be a single type of goal or a combination of all of them. The system have to find con-

straint aware inverse kinematics solutions, where a special type of motion should be defined

as constraint. As for example, for picking and placing a glass of water, the system should

constraint the arm roll rotation, where the arm should not rotate in such a way where the

water in glass will be spilled out. But for pouring the water in a different container we have

to allow such motion.

To generate collision aware and constraint aware inverse kinematics solutions, search

based algorithms or tree-searching has been proved to be best solutions. The motion plan-

ning task can be performed with the help of libraries such as OMPL (OpenMotion Plan-

ning Library) which is a collection of motion planning algorithms. We can utilize search

based motion planners such as RRT (Rapidly exploring Random Trees) or SBPL(Search

based motion planners),Gradient based optimization techniques such as CHOMP(Covariant

Hamilton Optimization for motion planning), or semi-constraint trajectory planners such

as Descartes planner.
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1.4 Design of Task-specific Robotic Hands

For the design of task-specific robotic hands, first the task-in-hand need to be specified in

the terms of motion. For that purpose we are utilizing the motion capturing system. The

motion is simplified in terms of characteristic points which define the task as solvibility

points. For this process we have utilized various methods such as PCA(Principal Compo-

nent Analysis), K-Mean algorithm and EM(ExpectationMinimization) algorithm. After

the task is simplified we choose the topology of the hand which would be able to perform

the task. In this context, we are defining the robotic hands as kinematic chains with a tree

topology consisting of several common joints that branch in different serial chains, each of

them corresponding to a different end-effectors. The process of formulating the topology

in terms of solvibility has been shown in [MA12]. After the topology has been selected for

the specified task, the screw axis for each joint and link length can be simplified by Artreeks

in the means of Genetic Algorithm. The hand can be designed with the specified screw axis

and link lengths.

Figure 1.1: Flowchart of designing Robotic Hands: From capturingmotions to designing robotic hand specified to the task
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1.5 Simulation and Real Hardware

By the recent simulation software environment, the real hardware situation can be perfectly

simulated. We are utilizing such softwares namely Gazebo and OpenRave. In gazebo the

robot model or object model can be imported in URDF (Unified Robot Description For-

mat) where the exact measurement of the model can be loaded by CAD information. In

OpenRave the objects are modeled in DAE format, which is also loaded by CADmodels.

The robotic system compromises of an UR-5 arm and barrett hand. The environment is

perceived by a Kinect camera. The hand model can be altered based on developed arm in

later stages for assessment in real hardware and simulation. The same exact measurement

of the components is imported in Gazebo simulation environment and can be evaluated

by trying to grasp different object models which are also presented in URDF format. The

simulated arm, hand and perception devices work in same way such as the real hardware. In

a ROS-based environment, the nodes of the components publishes the same topic such as

the real hardware. After the grasping framework is been evaluated in the simulation envi-

ronment, the entire grasping system would be evaluated and assessed in the real hardware.
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Our vision for robotics depends on perception...

GARY BRADSKI

2
Object Recognition

The robots are accumulating themselves in home environment. When the term ”robot”

appears, the first image comes to our mind is huge arms working in the industry and facto-

ries stealing jobs of human. They are working day and night precisely where repetition and

accuracy is the main weapon. But the situation is changing rapidly. Robots are not only

limited to industries only. Scientists around the world is trying to move them in our hu-

man environment as a social devices helping the elders, helping children even in personal

services. While in the industrial environment, the task of the robot is quite easy, as the en-

vironment is solely managed for the robot. The environment is modeled such as where the

sensors working for the robot does not have large constraints. The sensors are dedicated to
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detect only the simple objects in the production. On the other hand, in the unstructured

environment, such is our home, the environment is modeled for the benefit of the human.

The robots and their sensors are modeled in such a way where the robot have to acquire the

human environment. The environment is changing constantly. There is no guaranty that

an object would still be in a same place where it was half and hour ago. So the robot have to

detect and recognize the object every time while the robot tries to find the object.

2.1 2D v/s 3D

Humans perceive their environment as 3D and perceives the world on basis of what they

see. Looking over an object we can decide the object’s distance from us. The preliminary

results and progress over 2D community suggests that for robots the world can be perceived

in same way by image recognition. While for few years, there was a substantial belief that by

only perceiving the world in 2D, we can achieve the same results of perception as human.

But this erroneous theory ignores the facts of simple constraints such as lighting conditions,

scale, occlusions and various others. In fig 2.1 and 2.2 we can see how framing the percep-

tion problem in this way can lead to failures in capturing the true semantic meaning of the

world.

There are mainly two reasons for preferring 3D over 2D. The first one is monocular com-

puter vision applications are flustered by both fundamental deficiencies in the current gen-

eration of camera devices and limitations in the datastream itself. The former will most

likely be addressed in time, as technology progresses and better camera sensors are devel-

oped. An example of such a deficiency is shown in Figure 2.1,where due to the low dynamic
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Figure 2.1: Model matching failure in underexposed 2D images. None of the features extracted from themodel (left) can

be successfully matched onto the object of interest (right)(image from https://pointclouds.org/).

Figure 2.2: An example of a goodmodel match using features extracted from 2D images (left), where a beer bottle tem-

plate is successfully identified in an image. However, zooming out from the image, we observe that the bottle of beer is in

fact another picture stitched to a completely different 3D object (in this case amug). The semantics of the objects in this

case are thus completely wrong (image from https://pointclouds.org/).

15



range of the camera sensor, the right part of the image is completely underexposed. This

makes it very hard for 2D image processing applications to recover the necessary informa-

tion for recognizing objects in such scenes. On the other hand computer vision applications

make use of 2D camera images mostly, which are inherently capturing only a projection

of the 3D world. Figure 2.2attempts to capture this problem by showing two examples

of matching a certain object template in 2D camera images. While the system apparently

matched the model template (a beer bottle in this case) successfully in the left part of the

image, after we zoom out, we observe that the bottle of beer was in fact another picture in

itself, stitched to a completely different 3D geometric surface (the body of a mug in this

case). This is a clear example which shows that the semantics of a particular solution ob-

tained only using 2D image processing can be lost if the geometry of the object is not incor-

porated in the reasoning process. [RBRB09]

2.2 3D capturing devices

Three dimensional (3D) point clouds provide very important cues to analyze objects or

environments. They are, for instance, heavily used in topographical mapping, where an air-

plane or a satellite passes over an area and takes several snapshots with a laser range finder. [ESS05]used

laser range finders to build height map of scanned area. [JWS04] tried to develop such

kind of distance sensor in the field of mobile robotics, where the robot tries to find path,

avoid obstacles from the 3D data. [PAH03] used point clouds to reconstruct historic mon-

uments. One of the most important properties for mobile robots is their ability to pro-

cess information from the surrounding environment. There has been a lot of work done

in the area of laser range finders and scanners for perceiving 3D. [JCCE01] discusses the
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Figure 2.3: 3D capturing devices: (from the left)laser range finder, Time-of-flight cameras, Kinect Camera, Stereo Camera,

PR2 headwith two stereo camera pair.

used of radial basis function to reduce the number of point clouds in a point cloud dataset.

Same type of work has been done in [CBX95] where algorithms are presented to recon-

struct objects from a point cloud dataset. In order to perform its tasks the robot needs to

be able to perceive its environment. In navigation, for instance, the robot has to recognize

certain features that can be used as landmarks. During the DARPAGrand Challenge and

Urban Challenge, laser range finders have been used extensively on board of the different

autonomous vehicles to build a 3Dmap of the immediate environment. In order to grasp

an object, the robot needs first to find the object in the scene. To execute this task, 3D ob-

ject detection and classification have to be performed. Recognizing objects in 3D is a com-

pletely different problem. [Joh97a] presented work where the 3D descriptors are presented

in terms of spin images for object recognition. There are several types of 3D capturing de-

vices available. The use of cheap devices such as Microsoft kinect has revolutionized the 3D

capturing system for RGBD images.Figure 2.3presents some of the devices used for cap-
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Figure 2.4: An example of point cloud data with some example object, cup, glass, gerberbox,cokecan,milk,colorax

turing the environment in 3D. The Time-of-flight cameras or Laser Measurement systems

(LMS) or LIDAR systems sends rays of light(laser) or sound(sonar) in the world, which

will reflect and return back to sensor.Knowing the speed with which a ray propagates, and

using precise circuitry to measure the exact time when the ray was emitted and when the

signal returned, the distance d can be estimated as (simplified):

d =
ct
2

where c is the speed of ray and t is time for signal emitted and coming back to the sensor.In

contrast, triangulation techniques usually estimate distances using the following equation

(simplified):

d = || ft
x1 − x2

||

where f represents the focal distance of both sensors, T the distance between the sensors,

and x1 and x2 are the corresponding points in the two sensors. Though many different tri-

angulation systems exist, the most popular system used in mobile robotics applications is

the stereo camera. The sensor utilized here is a kinect sensor. An example of 3D point cloud

has been presented in Figure 2.6. Dense 3D point clouds can be processed and meaningful
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Figure 2.5: Point CloudDataset showed in distance (red is close, blue is far away) spectrum(image from

https://pointclouds.org/).

data can be extracted by Point Cloud Library(PCL). [RBRB09]

2.3 Processing in 3D

An important aspect when dealing with point cloud representations, is that they are able

to store much more information than just the 3D positions of points as acquired from the

input sensing device.During the acquisition process of a point cloud P, the distances from

the sensor to the surfaces in the world can be saved as properties for each resultant 3D point

pi ∈ P. The representation of pointcloud based on their distances is presented in fig 2.5

where the close objects are shown in red and far objects are shown in blue.

2.3.1 3D data representation

Giving the fact that all the above examples need point cloud representations which hold

multiple properties per point, the definition of a point pi = {xi, yi, zi} changes to that of

pi = {f1, f2, f3....., fn}, where fi denotes the a feature value in a given space (color,class level,

geometry etc.) thus changing the concept of 3D to nD.From these requirements, we can
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Figure 2.6: Point cloud data shown in terms of x,y,z,r,g,b,d

deduce that an appropriate I/O data storage format for a point cloud P,would be to save

each point with all its attribute values on a new line in a file, and thus have a file with n lines

for the n total number of points in P.A fictitious example is shown in the Fig. 2.6,where

xi,y1,zi represnt the 3D coordinates, ri,g1,bi are color associated with each point, li is the class

level, and di is the distance from the surface.To obtain the geometry around a query point

pq, most geometric processing steps need to discover a collection of neighboring points pk,

that represents the underlying scanned surface through sampling approximations. A solu-

tion is to use spatial decomposition techniques such as kd-tree or octree, and partition the

point cloud data into P chunks. Though by implementation most spatial decomposition

techniques can represent as a volumetric representation of P as shown in fig 2.7. Here all

Figure 2.7: Volumetric representation using a octree structure, with a leaf size of 1.5cm(image from

https://pointclouds.org/)
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the points are enclosed in boxes with different widths namely ”voxels”.

2.3.2 Normal Estimation

Surface normals are important properties of a geometric surface, and are heavily used in

many areas such as computer graphics applications, to apply the correct light sources that

generate shadings and other visual effects.Given a geometric surface, it’s usually trivial to

infer the direction of the normal at a certain point on the surface as the vector perpendic-

ular to the surface in that point. However, since the point cloud datasets that we acquire

represent a set of point samples on the real surface, there are two possibilities:

1. obtain the underlying surface from the acquired point cloud dataset, using surface

meshing techniques, and then compute the surface normals from the mesh;

2. use approximations to infer the surface normals from the point cloud dataset di-

rectly.

The solution for estimating the surface normal can be reduced to an analysis of the eigen-

vectors and eigenvalues (or PCA – Principal Component Analysis) of a covariance matrix

created from the nearest neighbors of the query point. More specifically, for each point pi,

we can assemble the covariance matrix C as follows:

C =
1
k .

k∑
i=1

.(pi − p⃗).(pi − p⃗)T,C.V⃗j = λj.v⃗j, j ∈ {0, 1, 2}

where k is the number of point neighbors considered in the neighborhood of pi, p⃗ repre-

sents the 3D centroid of the nearest neighbors, λj is the j-th eigenvalue of the covariance
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matrix and v⃗j is the j-th eigenvector. An estimation of surface normal of a point cloud data

has been presented in Fig. 2.8.

Figure 2.8: Point cloud data of a gerber box(left), the estimation of normals (right)

2.3.3 3D Filtering

Point clouds data can be filtered in several ways. In the process of acquisition of 3D point

cloud data, there may be several noise due to sensor inefficiency. Otherwise the point cloud

becomes dense, where more data is present than we need. So processing the unneeded data

makes the system unstable or increases the time needed for processing. In a voxel grid fil-

ter, the cloud is divided in multiple cube-shaped regions with the desired resolution. Then,

all points inside every voxel are processed so only one remains. The simplest way would be

to randomly select one of them, but a more accurate approach would be to compute the

centroid, which is the point whose coordinates are the mean values of all the points that be-

long to the voxel. In a passthrough filter, certain points will be removed from a point cloud

dataset whose values do not fall within a user-provided certain range. As for example, fil-

tering point cloud data based on Y value will remove all the points situated on the table. In

a conditional removal filtering, all the points will be filtered based on a certain condition

provided by the used. In a statistical outlier removal filtering process, or every point, the
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mean distance to its K neighbors is computed. Then, if we assume that the result is a nor-

mal (gaussian) distribution with a mean μ and a standard deviation σ, we can deem it safe

to remove all points with mean distances that fall out of the global mean plus deviation. It

runs a statistical analysis of the distances between neighboring points, and trims all which

are not considered ”normal”. So the points outside of the region, will be removed. All of

the filtering process have been shown in the Fig.

Figure 2.9: Flowchart showing point cloud registration by iteration (image from https://pointclouds.org/)

23



2.3.4 3D Registration

Registration is the technique of aligning two point clouds. The registration algorithm finds

a set of correspondences between two point clouds. There should be an area in the scene

which is captured by both point clouds. A linear transformation is then computed, which

outputs a matrix that contains a rotation and a translation. The operations will be per-

formed one point cloud get in place with respect to the other, with intersecting areas over-

lapping. The main task is to minimize the transformations between them. So the sensor

should be moved in a steady interval. There are mainly two types of 3D resitration.

1. ICP registration: ICP stands for Iterative Closest Point. It is an algorithm that will

find the best transformation that minimizes the distance from the source point cloud

to the target one. The problem is that it will do it by associating every point of the

source cloud to its ”twin” in the target cloud in a linear way, so it can be considered

a brute force method. It the clouds are too big, the algorithm will take its time to

finish, so we have to downsample clouds first.

2. Feature-based registration: the algorithm finds a set of keypoints in each cloud, com-

putes a local descriptor for each, and then performs a search to see if the clouds have

keypoints in common. If at least 3 correspondences are found, a transformation can

be computed. For accurate results, several correspondences must be found. This

method is faster than ICP, because matching is only done for the keypoints, not the

whole cloud.
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2.3.5 segmentation

Segmentation is the process of dividing the cloud data into segments or clusters, where each

clusters represent meaningful object in the dataset. Segmentation can be performed based

on points, normals or even textures. Segmentation task can be performed for extracting ob-

jects sitting on the table. We can detect the table and even the objects on the table. There

are several segmentation technique namely Euclidiean, Conditional, Region Growing,

Color-based, Min-Cut etc.

2.4 3D feature Extraction

As point feature representations go, surface normals and curvature estimates are somewhat

basic in their representations of the geometry around a specific point. Though extremely

fast and easy to compute, they cannot capture too much detail, as they approximate the ge-

ometry of a point’s k-neighborhood with only a few values. As a direct consequence, most

scenes will contain many points with the same or very similar feature values, thus reduc-

ing their informative characteristics.For a feature to be optimal, it must meet the following

criteria:

1. It must be robust to transformations: rigid transformations (the ones that do not

change the distance between points) like translations and rotations must not affect

the feature. Even if we play with the cloud a bit beforehand, there should be no dif-

ference.

2. It must be robust to noise: measurement errors that cause noise should not change

the feature estimation much.
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3. It must be resolution invariant: if sampled with different density (like after perform-

ing downsampling), the result must be identical or similar.

Figure 2.10: Finding Correspondences between point features of two clouds (image from https://pointclouds.org/)

There are many 3D descriptors implemented into PCL [RC11]. Each one has its own method

for computing unique values for a point. Some use the difference between the angles of the

normals of the point and its neighbors, for example. Others use the distances between the

points. Because of this, some are inherently better or worse for certain purposes. A given

descriptor may be scale invariant, and another one may be better with occlusions and par-

tial views of objects.

After calculating the necessary values, an additional step is performed to reduce the de-

scriptor size: the result is binned into an histogram [FTS10]. To do this, the value range

of each variable that makes up the descriptor is divided into n subdivisions, and the num-

ber of occurrences in each one is counted. For example, a descriptor that computes a single

variable, that ranges from 1 to 100. We choose to create 10 bins for it, so the first bin would

gather all occurrences between 1 and 10, the second from 11 to 20, and so on. We look at the

value of the variable for the first point-neighbor pair, and it is 27, so we increment the value
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of the third bin by 1. We keep doing this until we get a final histogram for that keypoint.

The bin size must be carefully chosen depending on how descriptive that variable is.The

variables do not have to share the same number of bins, and also the bins do not have to

be of the same size; if for example most values from the previous example fell in the 50-100

range then it would be sensible to have more bins of smaller size in that range.

Figure 2.11: Point pairs establishedwhen computing the PFH for a point (image from https://pointclouds.org/)

The goal of the Point Feature Histogram (PFH) [RBRB08] formulation is to encode a

point’s k-neighborhood geometrical properties by generalizing the mean curvature around

the point using a multi-dimensional histogram of values. This highly dimensional hyper-

space provides an informative signature for the feature representation, is invariant to the

6D pose of the underlying surface, and copes very well with different sampling densities or

noise levels present in the neighborhood.

A Point Feature Histogram representation is based on the relationships between the

points in the k-neighborhood and their estimated surface normals. Simply put, it attempts

to capture as best as possible the sampled surface variations by taking into account all the

interactions between the directions of the estimated normals. The resultant hyperspace is

thus dependent on the quality of the surface normal estimations at each point.

27



Figure 2.12: Fixed coordinate frame and angular features computed for one of the pairs (image from

https://pointclouds.org/)

Fig 2.11 presents an influence region diagram of the PFH computation for a query point

(pq), marked with red and placed in the middle of a circle (sphere in 3D) with radius r, and

all its k neighbors (points with distances smaller than the radius r) are fully interconnected

in a mesh. The final PFH descriptor is computed as a histogram of relationships between

all pairs of points in the neighborhood, and thus has a computational complexity ofO(k2).

To compute the relative difference between two points pi and pj and their associated nor-

mals ni and nj, we define a fixed coordinate frame at one of the points as referenced in Fig

2.11.

u = ns (2.1)

v = u× (pt − ps)
||pt − ps||2

(2.2)

w = u× v (2.3)

Using the uvw frame,the difference between the two normals ns and nt can be expressed as a

28



set of angular features as follows:

α = v.nt (2.4)

φ = u.(pt − ps)
d (2.5)

θ = arctan(w.nt, u.nt) (2.6)

where d is the Euclidean distance between the two points ps and pt,d = ||ps − pt||2. The

quadruplet ⟨α, φ, θ, d⟩ is computed for each pair of two points in k-neighborhood, there-

fore reducing the 12 values (xyz and normal information) of the two points and their nor-

mals to 4. There are two types of feature descriptors.Local feature descriptors are computed

Figure 2.13: PFH estimation on a point cloud data (image from https://pointclouds.org/)

for individual points that we give as input. The concept of object is not valid here as the

matching is done for all the points in the point cloud data. Some of the local descriptors
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Name type size Custom Point Type
PFH(PointFeatureHistogram) local 125 Yes

FPFH(FastPointFeatureHistogram) local 32 Yes
RSD(Radius− basedSurfaceDescriptor) local 289 Yes

3DSC(3DShapeContext) local 1980 Yes
USC(UniqueShapeContext) local 1960 Yes

SHOT(SignaturesofHistogramsofOrientations) local 352 Yes
SpinImages local 153 No

RIFT(Rotation− InvariantFeatureTransform) local 32 No
NARF(NormalAlignedRadialFeature) local 36 Yes
RoPS(RotationalProjectionStatistics) local 135 No
VFH(ViewPointFeatureHistogram) global 308 Yes

CVFH(ClusteredviewpointFeatureHistogram) global 308 Yes
OUR− CVFH(Oriented,UniqueandRepetableCVFH) global 308 Yes

ESF(EnsembleofShapeFunctions) global 640 Yes
GFPFH(GlobalFastPointFeatureHistogram) global 16 Yes

GRSD(GlobalRadius− basedsurfaceDescriptor) global 21 Yes

Table 2.1: Local and Global Point Cloud Feature Descriptors

are FPFH(Fast Point Feature Histogram) [RBRB09],RSD(Radius Surface based descrip-

tor) [Mar10, MPBB11a],3DSC (3D Shape Context) [FHK+04, SBP02],USC(Unique Shape

Context) [TSDS10a],SHOT(Signature of Histogram for Orientation) [FT11, TSDS10b],

SI(Spin Images) [Joh97b, JH99], RIFT(Rotation Invariant Feature Transform) [LSP05],NARF(Normal

Aligned Radial Feature) obtained by spherical projection and planar projection,RoPS(Rotational

Projection statistics feature) [GSB+11] On the other hand global features correspond to the

notion of object. So the matching is not done on the whole point cloud. A separate seg-

mentation task is performed to obtain the object from the dataset and the feature extraction

is performed on the detected object. Some of the global descriptors are VFH(Viewpoint

Feature Histogram) [RBRH10],CVFH(Clustered Viewpoint Feature Histogram) [AAB11],OUR-

CVFH(Oriented,Unique and Repetable Clustered Viewpoint Feature Histogram) [ATRV12],
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ESF(Ensemble of Shape Function) [WV11], GFPFH(Global Fast Point Feature Histogram) [Rus09],

GRSD(Global Radius based surface Descriptor) [MPR+10, MPBB11b, KMP+11]. A few lo-

cal and global feature descriptors and their corresponding features are presented in Table

2.1.

2.5 Recognition Pipeline

Ideally, a 3D object recognition system should be able to grab clouds from the device, pre-

process them, compute descriptors, compare them with the ones stored in our object database,

and output all matches with their position and orientation in the scene, in real time. Several

components must then be implemented to perform these sequential steps, each one taking

as input the output of the previous. This pipeline will be different depending on what type

of descriptor we are using: local or global. The local and global object recognition pipeline

is shown in Fig. 2.14

Figure 2.14: 3D recognition pipeline for local and global descriptors(image from https://pointclouds.org/)

Various snapshots are taken from different viewpoints.After this, the desired descriptors

must be computed for every snapshot of each object, and saved to disk. If global descriptors

are being used, a Camera Roll Histogram (CRH) should be included in order to retrieve

the full 6 DoF pose, as many descriptors are invariant to the camera roll angle, which would
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limit the pose estimation to 5 DoF. Finally, ground truth information about the camera

position and orientation will make it possible to compare it against the result given back by

the recognition system.
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The human hand is a very complex piece of equipment

with amazing capabilities

Peter k. Allen

3
Grasp Synthesis

Robotic Grasping is one of the most needed qualities for manipulating objects. The robots

to be placed in home or unstructured environment such as assitive services, healthcare,

household applications, they should have the capability of graping objects. In the recent

years, the area of robotic grasping has gained signified attention and improvement. But

still there is no grasping algorithm available that can be considered as an ”ideal” grasping

algorithm. The main cause behind that is the vast quantity of objects availability and the

uncertainty in the environment. Also it is quite complex to present a grasping algorithm

without the previous knowledge about the shape and pose of the object. The problem be-

comes more complex as the generated sensor data is noisy and incomplete.
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Figure 3.1: Cutkosky’s Grasp Taxonomy

3.1 Grasp Taxonomy

As most of the robotic hands try to mimic the human hand, understanding the grasp sys-

tem of human hand is necessary. In the earlier work of [MR.31], a human grasp taxonomy

is presented.The taxonomy is a systematic arrangement of the space of human grasps, and

the organization of the taxonomy reveals some of the factors influencing grasp choice.Grasps

can be placed on a continuum according to object size and power requirements.The taxon-

omy shows how task requirements (forces and motions) and object geometry combine to

dictate grasp choice. The taxonomy is based on observations of single-handed operations

by machinists working with metal parts and hand tools. The machinists were observed

and interviewed and their grasp choices were recorded as they worked. In addition,their

perceptions of tactile sensitivity, grasp strength, and dexterity were recorded. The Grasp

Taxonomy is presented in Fig. 3.1.

For a successful grasping algorithm, the system needs to successfully locate the object to

be grasped in a cluttered environment. Then it should be segmented from the background

and the pose should be estimated. Then the suitable and stable grasping region should be
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located on the object where the hand should be placed for grasping without slipping or any

deformation of the object.

Researchers around the world put various approaches for robotic grasping. The signif-

icant number of approaches based on grasping mechanism and interaction between the

object and hand are discussed in [AB00]. Also the role of hand design and control in the

context of robotic graping has been discussed in [EAG93]. [ASAS] has reviewed and di-

vided the grasping approaches in mainly two aspects: analytical and empirical.

3.2 Analytical Approach

Analytical approach determines the contact locations on the object and the hand configu-

ration that satisfy task requirements through kinematic and dynamic formulations. The

approach can be assessed from two perspectives 1)Force-closure properties and 2)Task-

compatibility.

3.2.1 Force Closure Graps

Based on the object model a lot of approaches have been proposed. [JP93] has proposed

amethod where each point in a plane face was parameterized linearly with two parameteres.

The work also been extended to the formation of linear conditions for three and four finger

force closure grasps. [Liu99] has generated an algorithm where force closure grasp can be

achieved by n fingers. In their work, n-1 fingers were fixed in a position, so they could not

generate force-closure grasp. A search have been performed for the location on the object

face for n-th finger using a linear parameterization technique, by which force-closure grasp

could have been achieved. Another method proposed by [DD00], where the position of
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force closure grasp for all fingers were found based on an initial random grasp. These type

of methods consider objects as basic shapes such as boxes and here the selection face of grap-

ing point is not been considered.

[DD01]also analyzed the force closure properties with 7 frictionless contact. Discretiza-

tion of the grasped object was performed so a large number of contact wrenches could have

been found. [SEK09] has shown that the wrenches which allow the association of any

three non-aligned contact points, could form a basis of the wrench space. By this formula-

tion, force-closure condition can be achived which can work with general objects. There are

also several works have been done where the comparison of different grasps have been per-

formed and the best suitable grasp is been chosen based on force-closure properties. One

such criterion is presented in [BM94], where extraction of optimal two or three fingered

grasps have been performed on 2D objects. Also the three finger grasp on 3D polyhedral

objects have been achieved. Force-closure properties is computationally expensive as search-

ing for an optimal grasp in the solution space needs heavy computational efforts. Using the

predefinde procedure, [CB03] generated some random grasps. [ATM99] have also address

the issue with a set of rules that defined prior to grasping.

3.2.2 Task Compatibility

Grasping is the main reason for manipulation of objects. So the grasping system need to

be aware of the task-in-hand. There are several approaches have been performed where

the intended task is been considered. In the work of [Chi98], an index ahve been con-

sidered where task compatibility is measured based on match of the optimal direction of

the manipulator and the actual direction of the movement required for the task to be per-
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formed. A measure to quantify the grasp quality in the context of the task is been presented

in [ZL98]. To tackle the issue, [Pol97] presented an algorithm that could model a task

wrench space(TWS) with a unit square. In later work, [CB03] came up with the idea of

object wrench space(OWS), which can describe the TWS in the context of OWS. It is also

been shown that the computational complexity can be marginally decreased by modelling

the OWS with a 6D ellipsoid.

3.3 Empirical Approach

In the empirical approaches, the system tries to mimic human grasping to select a grasp

that best conforms to task requirements and the target object geometry. On the basis of

computational complexity, empirical appraoch outperforms analytical approaches.The ap-

proach also can be assessed from two perspectives 1)Systems based on human observation

and 2)Systems based on object observation.

3.3.1 Systems based on human observation

These type of methods are classified based on some policy learning or learning by demon-

stration where a human collaborator tries to teach the robot how to grasp. Later the robot

tries to mimic that. The process of learning based on who,what and how to emulate the

operator is been described in [AB08]. In [S04, FK05] a secilized grasping framework is

been proposed where the human collaborator and the robot stands infront of a table with

objects to be manipulated. First the human shows the robot how to manipulated the ob-

ject. Then the robot tries to eulated it by means of HiddenMarkovModel(HMM). For the

purpose magnetic trackers are been used. A method for grasping using vision and audio
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has been proposed in [MH06]. In the demonstration phase, the robot tries to track the

hand of the operator stereoscopically. In later work in [MH08], an advanced mothod for

grasping has been proposed by Self-Organizing maps(SOM) and Q-learning approach. Vi-

sion based approach has also been presented in [JR08], where the system is constructed by

three parts: grasp classification, measurement of the hand position relative to the object and

grasp strategy for the robot to perfoem grasping. Developing grasping strategy using the

concept of mirror neurons have been presented in [EO02]. Another approach for grasping

has also been presented based on neural network in [FK05].

3.3.2 Systems based on object observation

This grasping approach considers object affordances, properties of the object and produces

an algorithm that is generalized to find grasping points on any object. The strategy of using

support vector machines(SVM) to generate mapping between the shape of the object, pa-

rameters of the grasp and quality of the grasp is been presented in [RP04]. The utilization

of affordance learning strategy is been presented in [MS08]. A shape matching algorithm

for grasping has been presented in [YL07] considering the availability of 3Dmodel of the

object. [Sax06] proposed a graping algorithm that finds a 2D point on an object by using

support Vector Machines. Later in [Sax09, ASN08] used supervised learning methods to

detect grasping points using image features on novel objects. [YJS11] proposed a rectan-

gle region detection technique using SVM-rank algorithm to detect robotic grasps. Deep

Learning methods for detecting grasps is presented in [ILS13].
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3.4 Wrench Space

In a 3D space, a wrench is a vector composed of force and torque.The space of wrenches

that may need to be applied during a task is the task wrench space.The space of wrenches

that can be applied by a grasp is the grasp wrench space. A possible grasp quality measure

can be the fraction of TWS and GWS.

ContactWrenches W(i, j) =
f(i, j)

λ(d× f(i, j))

where λ is the Torque scale factor and λ =
1

dmax

Figure 3.2: Friction cone concept.

3.5 Friction cones

Friction at a contact point allows forces in directions other than the contact normal. We

have to estimate friction cone as convex sum of a force vector on the boundary assuming a

unit normal vector.

f ≈
m∑
j=1

αjfj
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3.6 Types of Grasps

Several types of grasps can be performed. They are mainly:

1. Force-closure Grasp: These type of grasp completely restrain the objects.

2. Torque-closure Grasp: In these type of grasp the fingers completely restrain any ex-

ternal force.

3. Equilibrium: The contact forces can balance the object weight and external forces

and the origin is contained within grasp wrench space.

4. Manipulable Grasp: A manipulable grasp can impart arbitrary velocities on the ob-

ject without breaking contact.

3.7 Grasping SystemDesign

A robotic grasping system should be based on the following properties:

1. Hand Design: There are mainly two levels of hand design. In the lower level, the

number of fingers, kinematic structure should be considered. On the higher level,

the mechanism design, motors and materials should be considered.

2. Hand Control Algorithms: In the high-level of control the system have to find an ap-

propriate posture for a given task, while in the lower level, the capability of executing

the desired posture.

3. The hand should be collaborated with the sensors such as tactile, vision, range sen-

sors etc.
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4. The system should have a priori knowledge of the objects such as shape, semantics

and tasks to be performed

Most of the commercially available hands try to mimic the human hand which is a highly

complex system. But it is very illusive to try to replicate the human hand, as in the whole

lifetime we perform the task of grasping and learn strategies to grasp objects. Also the sen-

sor system of the human is highly complex to be mimicked, as no sensor available which the

can replicate the human sensors such as eyes for visual sensing and skin as tactile sensing.

A grasping system should able to compute space of forces and torques that can be applied

Figure 3.3: Grasp Planning Examples.

by the grasp. The system should numerically evaluate grasps by comparing grasps of one

hand with one object, comparing grasps of many hands with one object, comparing grasps

of many hands with one object and comparing grasps of many hands, across a task specified

object set.
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3.8 Hand Posture Subspace

A grasp can be a considered a point in a high-dimensional hand configuration space. To

find a grasp we need to search this grasp space which is highly expensive and intractable.

Low-dimensional subspaces can approximate most of the variance needed for common

grasping tasks.

Figure 3.4: Various commercially available hands.

3.9 Grasp Planning using EigenGrasps

Based on the work of [MR.31], another classical experiment for human taxonomy is per-

formed in [MSS98] where human test subjects asked to grasp imaginary objects. The fin-

ger poses recorded with data-glove with the set of 59 typical household objects e.g.small

and large ones, simple shape, more complex shape,tools etc. The motion dynamics were

recorded, but analysis was performed for static grasps only. Statistical analysis was per-

formed to search for common patterns. Principal component analysis reveals highly sig-

nificant correlation of finger movements, called grasp synergies. It was shown that only 2

principal components could validate 85% of the whole space.

Eigengrasps can ber visualized as the generalization of grasp taxonomy. It performs on

a lower dimensionality basis for grasping. Eigengrasp generally derived from human user

studies and mapped to robotic hands. For detecting a good grasp, we have to search the
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whole space. The searching is generally done by simulated annealing. Energy function for-

mulation attempts to bring pre-specified contact locations on the palm in contact with the

object. Simulated annealing search is performed over 8 variables where 6 for wrist position

and orientation and the other 2 for eigengrasp amplitudes. For eigengrasps, we need the fi-

Figure 3.5: Eigengrasps for different hands.

nal posture for stable form-closure grasps.The perfect grasp postures can not be found in

EG space, but the result can come very close with simple heiristics.The form-closure tests

can be performed in multi-threaded environment which can take advantage of multi-core

architecture.
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Figure 3.6: Stable Eigengrasps and the number of iterations taken .

44



Manipulation is the process of using one’s hands to

rearrange one’s environment.

Matthew T. Mason

4
Motion Planning

As the system progresses in its task of picking and placing the object, after recognizing the

object and calculating grasping points for the object, now its the task for motion planners

to deliver the hand to the designated pose where the grasping task starts. Motion plan-

ning for a robotic arm is one of the most explored area in the robotics community. Still

there exists no general framework for manipulating a robotic arm with constraints. The

task of planning motion for an arm becomes exponentially complex, as the Degree of Free-

dom(DOF) increases.

Planning motion for a robot in home or unstructured environment is computationally

difficult than the robots in industrial environment, as the industrial robots have to perform
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same task over and over again and their is very little scope of constraints. Also the sensors

are less prune to errors as they are implemented in a robot environment, whereas the sen-

sors for domestic robots are not meant for human environment. They have to plane with

the partial sensor information. While planning for a robotic arm in home environment, we

have to consider the factors of collision and constraint. As the environment is meant for the

human, there is a high probability for collision in the environment. Also we have to include

the constraints as for example we don’t want the robot to spill liquids from a glass while

manipulating the glass filled with liquid.

From factory robots to robots in home, for many useful tasks, manipulation planning is

an essential capability. Though manipulation seems like a standalone capability, it is based

on few building blocks such as, perception of the environment, generating an world model,

reasoning the world model, generating a joint-space path for executing the task, converting

path to trajectory and execute. The block of reasoning is necessary as the system have to

differentiate the objects to be manipulated and the static objects and verifying the capability

of control system to move the robot to the desired pose. There is a severe role of controllers

and planners: while controllers work locally, planners work globally. [Ber11]

Most successful methods for control theory follows the concept of minimizing the func-

tion in the neighborhood of robot’s configuration space by gradient descent. There are

several controllers have been implemented based on the idea. Some of them are used to

collision-avoidance [SK05], placing the end-effector in the task space [SK87], or for two-

legged robots [SN02]. In the [SK05], a concept of null-space projection has been intro-

duced which prioritize the constraints on a null-space and tries to adapt the lower-level

constraints. When the prioritization problems is solved, it is still not sufficient to solve the
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problem, as the gradient descent algorithm tends to find the local minima, not the global

one. [Bel57] has shown how a global solution can be found in building control policies

through dynamic programming. But such approaches do not validate in high-dimensional

configuration space, which most robotic manipulator generates. Another popular ap-

proach has been presented in [AS97, DBC04, MHV08] for learning policies by demon-

stration.

Control methods are not sufficient to provide a practical solution to the problem of

solving global planning for manipulators. On the other hand, sampling based planners

[LK00, LEKO96] have provided better solutions for high-DOFmanipulators.Sampling-

based manipulation planners are designed to explore the space of solutions efficiently,

without the exhaustive computation required for dynamic programming and without be-

ing trapped by local minima like gradient-descent controllers [LK00]. The global plan-

ning ability is highly important as the most trivial problem of collision-avoidance can be

affected by a local minimum by gradient descent. Sampling based planners can work in

state space, but they are most useful in c-space. The c-space paths can be converted to robot

trajectories. [JBG85] Higher level reasoning is needed for commanding the plannar. The

commands can be obtained from an user, but for fully autonomous robots, the reasoning

commands should drive the robot. Scientists and artificial intelligence researchers are de-

veloping higher level reasoning methods for several years. The most relevant higher level

reasoning techniques for manipulating planning are STRIPS. [FN71, Nil80, MGT04] The

STRIPS framework describes the world in terms of instances, predicates, and operators.

The instances are the set of distinct objects in the world. The predicates are the properties

of and relations between these instances. The operators are actions that change the state of
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the world. An operator can be executed if its set of preconditions is valid and the execution

of the operator produces a set of changes to the world. This type of planners are suitable

for producing higher-level tasks for the robots. As for a pick and place operation, a robot

needs to execute a set of motions, this type of planners can be helpful. But still the motion

is difficult to express in propositional or first-order logic. For our task, it would be benefi-

cial for the reasoning system to decide which object to grasp and the motion planner to do

the rest.

4.1 Moveit

MoveIT is motion planning interface that incorporates various techniques such as Inverse

Kinematics, perception, control and planning in a single framework for planning and exe-

cuting complex trajectories for robots with higher DOF. The main architecture of MoveIT

has been presented in fig. 4.1

4.1.1 Configuration

MoveIT [SC] requires robot description and some parameter configurations. It relies on

URDF(Unified robot Description Format) for robot link and joint description, joint trans-

mission values. Also the SRDF(Semantic Robot Description Format) needs to be provided

as the SRDFmaintains a tree structure for collision matrix and it is utilized for the self-

filtering and self-collision for the robot. Moveit also relies on several configurations includ-

ing joint limits, kinematics, motion planning, perception and other information.
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Figure 4.1: TheMoveIt architecture

4.1.2 Robot Interface

For planning the robot needs various state information: The joint state information pro-

vides the current state of the joints. The transform information is also needed as ROS-

architecture based system keeps track of every joint and links by a library called TF. MoveIT

generates the transform information from the library. For manipulating a robot either in

real time or in simulation, the package publishes its command through several action inter-

faces. MoveIT needs information for all the action topics. The system also needs to keep

track of the planning scene by which it can characterize itself, the objects need to be manip-
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ulated, obstacles and the world environment.

4.1.3 Motion Planning

The motion plans are executed by the motion planning requests. There are mainly three

types of motion plan request. They are:

1. Pose : The final position of the end-effector is been provided as input.

2. Joint Space: The final joint positions of the arm are provided to the robot.

3. Cartesian space: The robot have to move through several positions which generates

the cartesian space trajectory.

When the motion plans are executed the collision checking are automatically performed

including the self-collision of the robot. When the robot picks up an object, the object is

automatically added to the robot model and deleted from the world environment. The ob-

ject is been considered as a part of the robot model. When the robot later places the object

in the environment, the object is automatically deleted from the robot model and added to

the world environment. There are several constraints that can be posed on the motion or

trajectory of the robot.

1. Position Constraints: Constraints can be imposed where the position of a link to lie

within a region of space.

2. Orientation Constraints: Constraints can be imposed where the orientation of a link

can lie within a range of role, pitch and yaw.

50



3. Visibility Constraints: Constraints can be imposed where a point on a link can be

restricted to lie within the visibility cone of a particular sensor.

4. Joint Constraints: Constraints can be imposed where a joint is restricted within spec-

ified values.

5. User-specified constraints: Constraints can be generated based on the need of the

application.

Figure 4.2: Planning adapters
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4.1.4 Motion Planning pipeline

The result of a plan generated byMoveIT is a desired trajectory with desired maximum ve-

locity and acceleration at joint level. The motion planning pipeline collaborates motion

planners with motion planning adapters. The role of the motion plan adapters are prepro-

cessing the postprocessing the trajectories generated byMoveIT motion planners. In the

preprocessing step, the adapters check if the start state is in collision or not. The post pro-

cessing step performs the time parameterization of the final trajectory. The motion plan

adapters are shown in fig 4.2.

Figure 4.3: Planning scene
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4.1.5 OMPL

OMPL stands for OpenMotion Planning Library [SMK12]. OMPL implements random-

ized motion plans in MoveIT. OMPL is generated for general motion planning. MoveIT

utilizes OPML as the main motion planners. There are several motion planners included

in the motion planning for MoveIT. The planners receives information from the world as

planning scene, robot state information and sensor information.

4.1.6 World GeomertyMonitor

TheWorld Geomerty monitor utilizes information from sensor or user interface to create a

model of the robot. The world is a 3D represention of the environment and been imported

to the planning scene. The 3D representation is handled by occupancy map monitor and

it relies on the 3D sensor and images sensor of the robot. It creates an octomap [HWB+13]

from the 3D sensor of the robot and continuously updates the map for real time collision

avoidance. Fig 4.4 shows the perception architecture of MoveIT. The moveit architecture

is been shown on a PR2 robot in fig. 4.5. In the left the robot plans path avoiding the obsta-

cle. In the middle and right the robot creates octomap of the environment.

4.2 OpenRAVE

OpenRAVE [Dia10] provides an environment for testing, developing, and deploying mo-

tion planning algorithms in real-world robotics applications. The main focus is on simula-

tion and analysis of kinematic and geometric information related to motion planning.
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Figure 4.4: MoveIT perception pipeline

Figure 4.5: Themoveit architecture on PR2 robot. (left) The robot plans path avoiding the obstacle, (middle) The robot

creates an octomap of the cluttered environment,(right) The robot creates an octomap of the table environment

4.3 MIT-Drake

Drake [Ted14] is a toolbox maintained by the Robot Locomotion Group at the MIT

Computer Science and Artificial Intelligence Lab (CSAIL). It is a collection of tools for
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analyzing the dynamics of our robots and building control systems for them inMATLAB

and C++, with a heavy emphasis on optimization-based design/analysis.
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Insanity: Doing the same thing over and over again and

expecting different results.

Albert Einstein

5
Preliminary Results

Several experiments are been performed for capturing object snapshots and registering

them to create 6D pose model. Several object models are also been collected from various

open-source databases to expand our local model set.

5.1 Generating database for objects

For the object Recognition part we have acquired several models of daily-life objects by tak-

ing snapshots by different viewpoints to create our own database. Most of the objects are

simple shape-based object such as band-aid box, coffeecup, cigrette packet, wine glasses,

pringle boxes etc. A list of objects models captured are shown in fig. 5.1 The other object

56



Figure 5.1: Object snapshots captured by Kinect Device

models are borrowed from several open-source databases. A list of number of objects bor-

rowed from other databases is presented in Table 5.1

5.2 Recognizing Objects fromDataset

Several experiments have been performed with local and global feature descriptors for rec-

ognizing objects in cluttered environment. Some of the algorithms failed completely, while

some algorithm shown better performance.

5.2.1 Using local Feature Descriptors

Experiments are performed for the process of recognizing objects based on local feature

descriptors. While with FPFH, the object is recognized for only a partial view, neither the
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NameofDatabase No. of objects borrowed
Amazon 32

CMUIKEA 124
Pacman 26

TUM(TechnicalUniversityMunich) 54
TUW(TechnicalUniversityWien) 33

UniversitaCaFoscariVenezia 86
WillowGarageDataset 46

BerkleyDataset 132
KIT 55

PCLdataset 45
Washingtondataset 86

YCB(Yale− Columbia− Berkley)dataset 74

Table 5.1: Number of object models borrowed from other datasets

algorithm works on scattered environment, nor the algo succeeded in recognizing the object

with the change in viewpoint. Recognition process with FPFH is shown in Fig. 5.2

Figure 5.2: Recognition experiment with FPFH descriptors)

5.2.2 Using global Feature Descriptors

Using global feature descriptors such as VFH, we obtained promising results, but the train-

ing process is time consuming and the object model does not detect proper results if the

viewpoint in the test set belongs to a region in-between the stored viewpoints. The system

then tries to average the two viewpoints, and the result becomes poorer. Example of recog-

58



nition by VFH descriptor is shown in Fig. 5.3 Another promising results are obtained by

Figure 5.3: Recognition experiment with VFH descriptors)

the utilization of OUR-CVFH. The result is also simplfied as the training model generation

by the algorithm is quite simple and not so time consuming. Result of using OUR-CVFH

has been shown in Fig. 5.4

Figure 5.4: Recognition experiment with OUR-CVFH descriptors)

5.2.3 Object Recognition Kitchen

The Object Recognition Kitchen (ORK) [WG] is a project started at Willow Garage for

object recognition. ORK hosts mainly four types of object recognition scheme.
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1. LineMOD: The object recognition algorithm works by 2D and 3D and works on

rigid and lambertian objects.

2. tabletop: The object recognition algorithm works by 3D and works on rigid, lamber-

tian, rotationally symmetric objects.

3. TOD: The object recognition algorithm works by 2D and 3D and works on rigid,

textured and lambertian objects.

4. Transparent Objects:The object recognition algorithm works by 2D and 3D and

works on rigid and transparent objects.

Detecting a cup and the tabletop by Object Recognition Kitchen is been shown in fig. 5.5

Figure 5.5: Recognition experiment with Object Recognition Kitchen)

5.3 Grasp Synthesis

For synthesis of grasps to find stable and feasible grasps we are utilizing two opensource

grasping framework: GraspIt and Openrave
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5.3.1 GraspIT

GraspIT is a tool for grasping research. It features a huge library of hands and objects,

an intuitive user interface,visualization of grasp wrench space, quality measures to evalu-

ate grasp ,dynamic simulation and grasp planning capabilities. The main components of

GraspIT are:

1. World Construction: capability of reading object models, link models,kinematics and

assembling robots

2. User Interface: capability of viewing 3D scene, changing hand pose, auto-grip, manu-

ally moving joints and interfacing with matlab.

3. Contact determination: Capability of detecting collisions, adjusting contact to object

surface, finding contact area and adding friction cones

4. Grasp Analysis: Capability of computing grasp wrench space, using metrics on space

and grasp force optimization

5. Wrench Space visualization: Capability of creating projections of GraspWrench

Space

6. Rigid Body Dynamics: Capability of computing object motions

7. Grasp Planner: Capability of generating and testing grasps

8. Control Algorithms: PD controllers
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For including a novel hand in the grasping framework we have to include the hand kine-

matics in Denavit-Hertenberg parameters which can specify the transforms between links,

and can handle coupled joints. We also need the CADmodel file for 3D link geometries.

Figure 5.6: Graspit Frameworkwith Barrett Hand)

Figure 5.7: Eigen Grasp with GraspIT)

5.3.2 OpenRAVE

The OpenRave framework also been explored for computing grasps as shown in Fig. 5.10.
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Figure 5.8: Visualizing GraspQuality with Graspit)

Figure 5.9: Comparison of grasps on a object by different hands: Barrett hand(left), Paraller Gripper(middle), DLR

hand(right))

Figure 5.10: Performing grasp with different hands in OpenRave)

5.4 RobotHardware

Our robot hardware consists of mainly three components. The robot hand is a Barrett

hand. The sensor is a Microsoft Kinect and the arm is an UR5 robotic arm. The compo-
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nents are shown in Fig. 5.11

Figure 5.11: Robot hardware components: (left)Microsoft Kinect, (middle) Barrett Hand, (right) UR5 arm

5.5 Simulation

We are utilizing Gazebo as our primary simulation software. Gazebo [KH04] offers the

ability to accurately and efficiently simulate populations of robots in complex indoor and

outdoor environments. It is an well-designed simulator where it is possible to rapidly test

algorithms, design robots, and perform regression testing using realistic scenarios. To repre-

sent a robot in Gazebo, we have to create an URDF of the robot which accumulates all the

exact dimensions of the links and joints of the real robot.

Figure 5.12: (left/right) The robotic module in simulation, (middle) The table and various objects imported in Gazebo
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Figure 5.13: Our robotic module in Gazebo

Figure 5.14: Simulated robot in RViz. The sensor streaming is also presented in robot’s viewpoint
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We have created a robotic module of our robot hardware in Gazebo by the means of

URDF. The simulated robot matches to the real robot hardware in terms of visualization

and dimensions. Also the simulated controllers mimics the controller of the real robotic

arm, hand and sensor devices. The simulated robot is presented in Fig. 5.13. Some objects

from our object database are imported in Gazebo simulation environment. The objects in

gazebo are shown in Fig. 5.12. RVIZ in tool belonging to ROS-framework for visualization

of real time robot and sensor streaming. Out robot is visualized in RViz in fig. 5.14
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Research is to see what everybody else has seen, and to

think what nobody else has thought

Albert Szent-Gyorgyi

6
Proposed Research

The goal of the research is to create an environment in which grasping capabilities of dif-

ferent robotic hands can be tested and assessed. In order to do so, the theory and algorithm

for a robotic system that can grasp objects has to be developed. For the task, the robotic

system have to compare the commercially available robotic hands with the self-designed

robotic hands in the context of grasping capabilities. On the basis of finger placement in

the hands, the system need to calculate grasping points on the objects and manipulate the

objects based on the in-hand-task. For manipulating the object, the robotic system needs

to find the designated object in a cluttered environment, find stable and robust grasping

points and plan motions for picking up the object. The main focus of the research is to
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evaluate and compare feasible grasping points in the context of slippage conditions and

stability for both hands on the objects in the dataset in identical environment.

6.1 Recognizing object

For a successful grasping framework it is needed for the system to robustly detect and rec-

ognize objects in the cluttered environment. For detecting the particular object, the object’s

characteristics should be stored in a database which can be considered as features. Com-

paring the stored features with the segmented test environment, we can detect the object

with 6D pose. Various 3D object recognition pipeline will be evaluated and the most robust

algorithm will be chosen for the purpose.

6.1.1 Tasks

• Creating a huge database of household objects

• Calculating 3D features of the objects

• Recognizing objects based on the 3D features

• Identify 6D pose information of recognized object

6.1.2 Methods

• Constructing object models by rotating table and registering snapshots towards a full

model

• Borrow objects from various open-source database
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• Implementation of Point cloud library for detecting 3D feature descriptors of the

objects

• Recognize objects in cluttered environment with the utilization of point cloud li-

brary features (global)

• Implementation of Object Recognition Kitchen(ORK) library for recognition of

objects

• Implementation of OUR-CVFH (Oriented, Unique and Repeatable Clustered

Viewpoint Feature Histogram) for recognizing objects

• Implementation of CRH( Camera Roll Histogram) for detecting 6D pose of the

object

6.2 Grasping Point Calculation

After recognizing or detecting the object in the environment, the robotic system will try to

find stable and robust grasping points to grasp the object. To be stable, the grasp have to

be force closure. Several methods have been implemented for grasping objects with parallel

plate grippers, where a rectangle pose on the object have been evaluated. As our system ac-

cumulates the barrett hand as the main grasping hand, calculating the grasping points faces

severe complexity. Later other self-designed hands will be evaluated based on the algorithm

generated by the research.

Calculating grasping point is highly complex as the work can be formulated as a search

space in lower dimension. So the process of determining the stable grasp from a set of

grasps adds extra complexity to the task. The searching of stable grasp in a set of grasp can
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be solved by the implication of learning techniques such as HMM, Bayesian Network,

Convolution Neural Network or Deep LearningMethods. The machine learning ap-

proaches will be implemented and evaluated based on grasp stability and time complexity.

6.2.1 Tasks

• Calculating Grasping points from the recognized feature descriptors of the objects.

• Defining stability conditions based on the object and the hand

• Provide force-closure grasps on the object

• Analyze the grasp based on TaskWrench Space and GraspWrench Space

6.2.2 Methods

• Exploration of grasping framework such as GraspIT, OpenGrasp and OpenRAVE

• Calculating grasping points based on the suitability of the grasping framework

• importing self-designed hands in the grasping framework

• Implementation of Learning algorithms such as HMM, Bayesian Network, Convo-

lutional Neural Network or Deep learning methods for calculating feasible grasping

points

• Enable the system to learn grasp for similar type of objects
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6.3 PlanningMotion

After the objects been recognized and the grasping points are evaluated, the robotic sys-

tem should able to plan motions for grasp the object, pick it up, and place according to

the task in hand. Several motion planning algorithms are present for planning motions for

high-DOF robotic arms. The motion planning algorithms will be evaluated and the best

solution would be implemented in the robotic system.

6.3.1 Tasks

• Plan collision-aware and constraint-aware inverse kinematic solutions for robotic

arm to reach towards grasping points

• Explore various motion planning algorithms for planning motions

• Define pick-and-place tasks for various objects with constraints

6.3.2 Methods

• Explore MoveIT framework for planning motions

• Explore OpenRave framework for planning motions

• Explore MIT-Drake framework for planning motions

• Explore sampling based motion planners such as OMPL(OpenMotion Planning

Library), SPBL (Search BasedMotion Planners), CHOMP(Co-variant Hamilton

Optimization for motion planning)
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• Explore RRT-based (Rapidly Exploring Random Trees) motion planners for plan-

ning motions.

6.4 Design of robotic Hands

New robotic hands will be designed based on specified task. The design task consists of

capturing motions, converting motions into solvable tasks, defining hand parameters for

design and designing hand assembling new hands.

6.4.1 Task

• Design and assemble new task-specific robotic hands

6.4.2 Method

• Capturing motion data

• Synthesizing motion data into task specific solvibility points.

• Explore hand parameters by the solvibility and hand topology by Artreeks

• Design hands CADmodels based on Artreeks solutions

6.5 The robot in hardware and software

The grasping framework as a combination of capabilities of recognizing objects, calculat-

ing grasping points, planning and executing motions are implemented in both hardware

and simulation. As the simulation system is defined by the identical programs and measure-

ments of the real robot, it is beneficial to evaluate the system in simulation before imple-

menting in real hardware.
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6.5.1 Tasks

• Construct the robotic module

• Import the robot in simulation

• Import the objects in database towards simulation

• Set up the environment for pick and place task

6.5.2 Methods

• Assembling all the robotic components such as Kinect, Barrett Hand and UR5 arm

to construct the robotic module

• Create a coupler for connecting the UR5 link with the barrett hand link

• Construction of an URDF(unified robot description format) of the robot

• Importing the URDF in Gazebo simulation

• Create the pick and place environment in Gazebo simulation

• Develop ROS packages for the robot to manipulate the robot in simulation and real

time

6.6 Evaluation and Assessment of Hands

When the framework and algorithms provide sufficient results, the self-designed robotic

hands would be tested in the place of barrett hand. The evaluation would be based on task-

specification, stability, robustness and time complexity.
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6.6.1 Tasks

• Reconstruction of the robot with the self-designed hands

• Evaluate and compare results with the result obtained by barrett hand

6.6.2 Methods

• Removal of barrett hand and assemble of self-design hand

• Construction of new urdf of the hand to be imported in simulation

6.7 Goal of the Research

Summarizing the main goal of the research:

1. An object recognition framework that utilizes 3D point cloud for feature extrac-

tion will be implemented among other techniques based on robustness and time-

complexity.

2. A grasping framework that can calculate stable and robust grasps on the recognized

object utilizing learning techniques.

3. A motion planning framework that can plan collision aware and constraint-aware

trajectories for the robot to reach grasping pose and manipulate the object.

4. Design of task-specific robotic hands

5. Utilization of the grasping framework for comparing the commercially available

robotic hands with self-designed robotic hands.

74



6.8 Time Allotment

Tasks Duration(in months)

Explore methods for Object Recognition 3

Design of new robotic hands (in parallel) 6

Explore Grasp point selection algorithms 3

Explore Learning Techniques 3

Explore Motion Planning Techniques 3

Evaluate Grasping of different hands 3

Total 15
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7
Conclusion

A general grasping framework has been proposed where the robotic system would recog-

nize the objects based on RGBD features, calculate robust and stable grasping points based

on the recognized features by statistical learning methods, executes the task of grasping

based on the calculated grasping points. At the initial stage, the task would be performed

commercially available robotic hands, which will be replaced by self-made robotic modules

for evaluation.
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